Login / Signup

Employing a Plant Probiotic Actinomycete for Growth Promotion of Lettuce ( Lactuca sativa L. var. longifolia) Cultivated in a Hydroponic System under Nutrient Limitation.

Benyapa KitwetchPharada RangseekaewYupa ChromkaewWasu Pathom-AreeSirasit Srinuanpan
Published in: Plants (Basel, Switzerland) (2023)
The consumption of lettuce is associated with an increased risk of ingesting nitrate, a naturally occurring and potentially harmful compound that can have adverse effects on human health. Hydroponic cultivation systems serve as effective tools for regulating nutrient solutions and nitrogen availability, which are essential for controlling nitrate levels. However, the techniques for reducing nutrient levels need to be appropriately calibrated based on lettuce growth responses and their interactions with the environment and growing conditions. Previous studies have demonstrated that plant probiotic actinomycetes can alleviate nutritional stress in various crops. However, there is a noticeable gap in research concerning the effects of actinomycetes on hydroponically grown lettuce, particularly under nutrient-limiting conditions. This study aimed to evaluate the effectiveness of the actinomycete Streptomyces thermocarboxydus S3 in enhancing lettuce growth in a nutrient-restricted hydroponic system. The results indicated that the detrimental effects of nutrient stress on lettuce were mitigated by the inoculation of lettuce with S. thermocarboxydus S3. This mitigation was evident in various growth parameters, including leaf count, shoot length, and the fresh and dry weights of both shoots and roots. In the presence of nutritional stress, S. thermocarboxydus S3 likely mitigated the negative effects on lettuce by reducing hydrogen peroxide levels, presumably through the synthesis of H 2 O 2 -scavenging enzymes. Furthermore, S. thermocarboxydus S3 successfully survived and colonized lettuce roots. Therefore, the inoculation of lettuce with S. thermocarboxydus S3 offers significant advantages for promoting lettuce growth in nutrient-limited hydroponic systems.
Keyphrases
  • hydrogen peroxide
  • human health
  • risk assessment
  • systematic review
  • randomized controlled trial
  • emergency department
  • adverse drug
  • heat stress
  • peripheral blood