Macrophages, a class of tissue resident innate immune cells, are responsible for sequestering foreign objects through the process of phagocytosis, making them a promising target for immune-modulation via particulate engineering. Here, we report that nanoparticle (NP) dosing and cellular internalization via phagocytosis significantly enhances survival of ex vivo cultures of primary bone marrow-derived, alveolar, and peritoneal macrophages over particle-free controls. The enhanced survival is attributed to suppression of caspase-dependent apoptosis and is linked to phagocytosis and lysosomal signaling. Uniquely, poly(ethylene glycol)-based NP treatment extended cell viability in the absence of macrophage polarization and enhanced expression of pro-survival B cell lymphoma-2 (Bcl-2) protein in macrophages following multiple routes of in vivo administration. The enhanced survival phenomenon is also applicable to NPs of alternative chemistries, indicating the potential universality of this phenomenon with relevant drug delivery particles. These findings provide a framework for extending the lifespan of primary macrophages ex vivo for drug screening, vaccine studies, and cell therapies and has implications for any in vivo particulate immune-engineering applications.
Keyphrases
- drug delivery
- free survival
- cell death
- cell cycle arrest
- innate immune
- oxidative stress
- poor prognosis
- stem cells
- emergency department
- mesenchymal stem cells
- endoplasmic reticulum stress
- patient safety
- small molecule
- cell therapy
- binding protein
- cancer therapy
- cell proliferation
- signaling pathway
- iron oxide
- pi k akt
- drug induced
- drug release