Bioinformatic analysis of smoothelin family members supports tissue-specific functions of unique C-terminal calponin homology domains.
Dhruv GargSteven A FisherPublished in: Physiological reports (2023)
Smoothelins are cytoskeletal proteins with a single C-terminal calponin homology domain type 2 (CHD2). Little is known about the significance of variation in SMTN CHD2 domains, addressed here through analysis of public databases. A conserved 152 nt penultimate constitutive exon present in all SMTNs encodes helices II-IV of CHD2 with high identity (nt/aa 63/65%). Variable CHD2s of SMTN (helices IV-VI) are generated by alternative splicing of 165 nt exon E20. E20 and the CHD2 it encodes have high homology with the terminal constitutive exon of SMTNL1 (E8; nt/aa 72/75% identity). Unique to these CHD2 variants are a conserved extended nine amino acid C-terminal tail containing KTKK ubiquitination motifs. When E20 of SMTN is skipped (SMTN E20-), constitutive terminal E21 codes for helices IV-VI of CHD2. SMTN E21 has high identity with the terminal exon of SMTNL2 (E8; nt/aa 75/81% identity of aligned sequences) except for coding for a unique extended C-terminus (24 nt; 8aa) conserved only in mammals. SMTN isoform expression is tissue-specific: SMTNE20- and SMTNE20+ are highly expressed in SMC and non-muscle cells, respectively, while SMTNL1 + 2 are highly expressed in skeletal muscle cells. Tissue-specific expression of SMTN CHD2s with unique helices IV-VI suggest tissue-specific functions that require further study.