Login / Signup

Global identification of quantitative trait loci and candidate genes for cold stress and chilling acclimation in rice through GWAS and RNA-seq.

Ahmed Adel KhatabJianguo LiLihua HuJiangyi YangChuchuan FanLingqiang WangGuosheng Xie
Published in: Planta (2022)
Associated analysis of GWAS with RNA-seq had detected candidate genes responsible for cold stress and chilling acclimation in rice. Haplotypes of two candidate genes and geographic distribution were analyzed. To explore new candidate genes and genetic resources for cold tolerance improvement in rice, genome-wide association study (GWAS) mapping experiments with 351 rice core germplasms was performed for three traits (survival rate, shoot length and chlorophyll content) under three temperature conditions (normal temperature, cold stress and chilling acclimation), yielding a total of 134 QTLs, of which 54, 59 and 21 QTLs were responsible for normal temperature, cold stress and chilling acclimation conditions, respectively. Integrated analysis of significant SNPs in 134 QTLs further identified 116 QTLs for three temperature treatments, 53, 43 and 18 QTLs responsible for normal temperature, cold stress and chilling acclimation, respectively, and 2 QTLs were responsible for both cold stress and chilling acclimation. Matching differentially expressed genes from RNA-seq to 43 and 18 QTLs for cold stress and chilling acclimation, we identified 69 and 44 trait-associated candidate genes, respectively, to be classified into six and five groups, particularly involved in metabolisms, reactive oxygen species scavenging and hormone signaling. Interestingly, two candidate genes LOC_Os01g04814, encoding a vacuolar protein sorting-associating protein 4B, and LOC_Os01g48440, encoding glycosyltransferase family 43 protein, showed the highest expression levels under chilling acclimation. Haplotype analysis revealed that both genes had a distinctive differentiation with subpopulation. Haplotypes of both genes with more japonica accessions have higher latitude distribution and higher chilling tolerance than the chilling sensitive indica accessions. These findings reveal the new insight into the molecular mechanism and candidate genes for cold stress and chilling acclimation in rice.
Keyphrases
  • rna seq
  • single cell
  • genome wide
  • genome wide association study
  • stress induced
  • high resolution
  • reactive oxygen species
  • gene expression
  • heat stress
  • poor prognosis
  • small molecule
  • copy number
  • bioinformatics analysis