Tumor-Associated CD19+CD39- B Regulatory Cells Deregulate Class-Switch Recombination to Suppress Antibody Responses.
Subhadip PatiSumon MukherjeeSaikat DuttaAharna GuinDia RoySayantan BoseSilpita PaulSudipto SahaSankar BhattacharyyaPratyush DattaJayati ChakrabortyDiptendra K SarkarGaurisankar SaPublished in: Cancer immunology research (2023)
B cells are an essential component of humoral immunity. Their primary function is to mount antigen-specific antibody responses to eliminate pathogens. Despite an increase in B-cell number, we found that serum-IgG levels were low in patients with breast cancer. To solve this conundrum, we used high-dimensional flow cytometry to analyze the heterogeneity of B-cell populations and identified a tumor-specific CD19+CD24hiCD38hi IL10-producing B regulatory (Breg)-cell subset. Although IL10 is a Breg-cell marker, being an intracellular protein, it is of limited value for Breg-cell isolation. Highly expressed Breg-cell surface proteins CD24 and CD38 also impede the isolation of viable Breg cells. These are hurdles that limit understanding of Breg-cell functions. Our transcriptomic analysis identified, CD39-negativity as an exclusive, sorting-friendly surface marker for tumor-associated Breg cells. We found that the identified CD19+CD39‒IL10+ B-cell population was suppressive in nature as it limited T helper-cell proliferation, type-1 cytokine production, and T effector-cell survival, and augmented CD4+FOXP3+ regulatory T-cell generation. These tumor-associated Breg cells were also found to restrict autologous T follicular helper-cell expansion and IL21 secretion, thereby inhibiting germinal transcript formation and activation-induced cytidine deaminase expression involved in H-chain class-switch recombination (CSR). This isotype-switching abnormality was shown to hinder B-cell differentiation into class-switched memory B cells and subsequent high-affinity antibody-producing plasma B cells, which collectively led to the dampening of IgG-mediated antibody responses in patients with cancer. As low IgG is associated with poor prognosis in patients with cancer, Breg-cell depletion could be a promising future therapy for boosting plasma B cell-mediated antibody responses.
Keyphrases
- single cell
- poor prognosis
- induced apoptosis
- cell therapy
- cell proliferation
- cell cycle arrest
- regulatory t cells
- flow cytometry
- transcription factor
- dna damage
- signaling pathway
- long non coding rna
- stem cells
- rna seq
- dna repair
- endoplasmic reticulum stress
- small molecule
- working memory
- gram negative
- diabetic rats
- antimicrobial resistance
- endothelial cells
- low cost