Login / Signup

RecA Is Required for the Assembly of RecN into DNA Repair Complexes on the Nucleoid.

Emma K McLeanJustin S LenhartLyle A Simmons
Published in: Journal of bacteriology (2021)
Homologous recombination requires the coordinated effort of several proteins to complete break resection, homologous pairing, and resolution of DNA crossover structures. RecN is a conserved bacterial protein important for double-strand break repair and is a member of the structural maintenance of chromosomes (SMC) protein family. Current models in Bacillus subtilis propose that RecN responds to double-stranded breaks prior to RecA and end processing, suggesting that RecN is among the very first proteins responsible for break detection. Here, we investigate the contribution of RecA and end processing by AddAB to RecN recruitment into repair foci in vivo. Using this approach, we found that recA is required for RecN-green fluorescent protein (GFP) focus formation on the nucleoid during normal growth and in response to DNA damage. In the absence of recA function, RecN foci form in a low percentage of cells, RecN localizes away from the nucleoid, and RecN fails to assemble in response to DNA damage. In contrast, we show that the response of RecA-GFP foci to DNA damage is unchanged in the presence or absence of recN. In further support of RecA activity preceding RecN, we show that ablation of the double-strand break end-processing enzyme addAB results in a failure of RecN to form foci in response to DNA damage. With these results, we conclude that RecA and end processing function prior to RecN, establishing a critical step for the recruitment and participation of RecN during DNA break repair in Bacillus subtilis. IMPORTANCE Homologous recombination is important for the repair of DNA double-strand breaks. RecN is a highly conserved protein that has been shown to be important for sister chromatid cohesion and for surviving break-inducing clastogens. Here, we show that the assembly of RecN into repair foci on the bacterial nucleoid requires the end-processing enzyme AddAB and the recombinase RecA. In the absence of either recA or end-processing RecN-GFP, foci are no longer DNA damage inducible, and foci form in a subset of cells as large complexes in regions away from the nucleoid. Our results establish the stepwise order of action, where double-strand break end processing and RecA association precede the participation of RecN in break repair in Bacillus subtilis.
Keyphrases