Exosomes Released by Influenza-Virus-Infected Cells Carry Factors Capable of Suppressing Immune Defense Genes in Naïve Cells.
Yana A ZabrodskayaMarina PlotnikovaNina V GavrilovaAleksey A LozhkovSergey A KlotchenkoArtem KiselevVladimir BurdakovEdward RamsayLada V PurvinshMarja EgorovaVera VysochinskayaIrina L BaranovskayaAlexandra BrodskayaRoman PovalikhinAndrey V VasinPublished in: Viruses (2022)
Background: Exosomes are involved in intercellular communication and can transfer regulatory molecules between cells. Consequently, they can participate in host immune response regulation. For the influenza A virus (IAV), there is very limited information on changes in exosome composition during cell infection shedding light on the potential role of these extracellular membrane vesicles. Thus, the aim of our work was to study changes in exosomal composition following IAV infection of cells, as well as to evaluate their effect on uninfected cells. Methods: To characterize changes in the composition of cellular miRNAs and mRNAs of exosomes during IAV infection of A549 cells, NGS was used, as well as PCR to identify viral genes. Naïve A549 cells were stimulated with infected-cell-secreted exosomes for studying their activity. Changes in the expression of genes associated with the cell's immune response were shown using PCR. The effect of exosomes on IAV replication was shown in MDCK cells using In-Cell ELISA and PCR of the supernatants. Results: A change in the miRNA composition (miR-21-3p, miR-26a-5p, miR-23a-5p, miR-548c-5p) and mRNA composition ( RPL13A , MKNK2 , TRIB3 ) of exosomes under the influence of the IAV was shown. Many RNAs were involved in the regulation of the immune response of the cell, mainly by suppressing it. After exosome stimulation of naïve cells, a significant decrease in the expression of genes involved in the immune response was shown ( RIG1 , IFIT1 , MDA5 , COX2 , NFκB , AnxA1 , PKR , IL6 , IL18 ). When infecting MDCK cells, a significant decrease in nucleoprotein levels was observed in the presence of exosomes secreted by mock-infected cells. Viral levels in supernatants also decreased. Conclusions: Exosomes secreted by IAV-infected cells could reduce the immune response of neighboring intact cells, leading to more effective IAV replication. This may be associated both with regulatory functions of cellular miRNAs and mRNAs carried by exosomes, or with the presence of viral mRNAs encoding proteins with an immunosuppressive function.
Keyphrases
- induced apoptosis
- cell cycle arrest
- immune response
- mesenchymal stem cells
- stem cells
- signaling pathway
- sars cov
- cell death
- poor prognosis
- long non coding rna
- endoplasmic reticulum stress
- cell proliferation
- inflammatory response
- cell therapy
- genome wide
- dna methylation
- pi k akt
- risk assessment
- social media
- transcription factor
- nuclear factor