Cereal Fiber Ameliorates High-Fat/Cholesterol-Diet-Induced Atherosclerosis by Modulating the NLRP3 Inflammasome Pathway in ApoE-/- Mice.
Ru ZhangShufen HanZheng ZhangWeiguo ZhangJing YangZhongxiao WanLiqiang QinPublished in: Journal of agricultural and food chemistry (2018)
Cereal fiber is associated with decreasing the risk of cardiovascular diseases. However, whether cereal fiber modulates inflammatory response and improves atherosclerosis remains unclear. This study evaluated the anti-atherosclerotic effect of cereal fibers from oat or wheat bran and explored the potential anti-inflammatory mechanisms. Male ApoE-/- mice were given a high-fat/cholesterol (HFC) diet or a HFC diet supplemented with 0.8% oat fiber or wheat bran fiber. After 18 weeks of the feeding period, serum lipids and inflammatory cytokines were measured. The relative protein levels of the nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome pathway and nuclear factor κB (NF-κB) were determined by the western blot method in aorta tissues. Pathologically, oat fiber and wheat fiber significantly reduced atherosclerotic plaques by 43.3 and 27.1%, respectively. Biochemically, cereal fiber markedly decreased the protein levels of myeloid differentiation factor 88 (MyD88) and toll-like receptor 4 (TLR4) in aortic tissues. The expression of NF-κB was similarly inhibited by both cereal fibers. In comparison to wheat bran fiber, oat fiber had greater effects in reducing the plague size and inhibiting TLR4/MyD88/NF-κB pathways. Such differences might come from modulation of the NLRP3 inflammasome pathway because the expressions of the cleavage of caspase-1 and interleukin (IL)-1β were inhibited only by oat fiber. The present study demonstrates that cereal fibers can attenuate inflammatory response and atherosclerosis in ApoE-/- mice. Such effects are pronounced with oat fiber and likely mediated by specific inhibition of oat fiber on the NLRP3 inflammasome pathway.
Keyphrases
- atrial fibrillation
- nlrp inflammasome
- toll like receptor
- inflammatory response
- nuclear factor
- heart failure
- cardiovascular disease
- signaling pathway
- oxidative stress
- immune response
- poor prognosis
- physical activity
- gene expression
- lipopolysaccharide induced
- type diabetes
- acute myeloid leukemia
- left ventricular
- weight loss
- cell proliferation
- binding protein
- cognitive decline
- coronary artery
- pulmonary hypertension
- skeletal muscle
- mild cognitive impairment
- insulin resistance
- cardiovascular risk factors