Enhancement of Mast Cell Degranulation Mediated by Purinergic Receptors' Activation and PI3K Type δ.
Haruhisa NishiFrançois NiyonsabaAmir PellegEdward S SchulmanPublished in: Journal of immunology (Baltimore, Md. : 1950) (2021)
Mast cells express multiple metabotropic purinergic P2Y receptor (P2YR) subtypes. Few studies have evaluated their role in human mast cell (HMC) allergic response as quantified by degranulation induced by cross-linking the high-affinity IgE receptor (FcεRI). We have previously shown that extracellular nucleotides modify the FcεRI activation-dependent degranulation in HMCs derived from human lungs, but the mechanism of this action has not been fully delineated. This study was undertaken to determine the mechanism of activation of P2YRs on the degranulation of HMCs and elucidate the specific postreceptor pathways involved. Sensitized LAD2 cells, a human-derived mast cell line, were subjected to a weak allergic stimulation (WAS) using a low concentration of Ag in the absence and presence of P2YR agonists. Only the metabotropic purinergic P2Y11 receptor (P2Y11R) agonist, adenosine 5'-(3-thio)triphosphate (ATPγS), enhanced WAS-induced degranulation resulting in a net 7-fold increase in release (n = 4; p < 0.01). None of the P2YR agonists tested, including high concentrations of ATPγS (1000 μM), enhanced WAS-induced intracellular Ca2+ mobilization, an essential component of activated FcεRI-induced degranulation. Both a PI3K inhibitor and the relevant gene knockout decreased the ATPγS-induced enhancement. The effect of ATPγS was associated with enhanced phosphorylation of PI3K type δ and protein kinase B, but not the phosphoinositide-dependent kinase-1. The effects of ATPγS were dose dependently inhibited by NF157, a P2Y11R antagonist. To our knowledge, these data indicate for the first time that P2YR is linked to enhancement of allergic degranulation in HMC via the PI3K/protein kinase B pathway.
Keyphrases
- protein kinase
- endothelial cells
- high glucose
- diabetic rats
- healthcare
- drug induced
- induced pluripotent stem cells
- oxidative stress
- genome wide
- pluripotent stem cells
- immune response
- copy number
- artificial intelligence
- toll like receptor
- allergic rhinitis
- lps induced
- endoplasmic reticulum stress
- highly efficient
- stress induced
- case control