Login / Signup

Diastereo- and Enantioselective Ruthenium-Catalyzed C-C Coupling of 1-Arylpropynes and Alcohols: Alkynes as Chiral Allylmetal Precursors in Carbonyl anti-(α-Aryl)allylation.

Ming XiangAnkan GhoshMichael J Krische
Published in: Journal of the American Chemical Society (2021)
Highly tractable 1-aryl-1-propynes, which are readily accessible via Sonogashira coupling, serve as chiral allylmetal pronucleophiles in ruthenium-JOSIPHOS-catalyzed anti-diastereo- and enantioselective aldehyde (α-aryl)allylations with primary aliphatic or benzylic alcohol proelectrophiles. This method enables convergent construction of homoallylic sec-phenethyl alcohols bearing tertiary benzylic stereocenters. Both steric and electronic features of aryl sulfonic acid additives were shown to contribute to the efficiency with which a more selective and productive iodide-bound ruthenium catalyst is formed. As corroborated by isotopic labeling studies, a dual catalytic process is operative in which alkyne-to-allene isomerization is followed by allene-carbonyl reductive coupling via hydrogen auto-transfer. Crossover of ruthenium hydrides emanating from these two discrete catalytic events is observed. The utility of this method is illustrated by conversion of selected reaction products to the corresponding phenethylamines and the first total syntheses of the neolignan natural products (-)-crataegusanoids A-D.
Keyphrases
  • room temperature
  • ionic liquid
  • electron transfer
  • capillary electrophoresis
  • open label
  • randomized controlled trial
  • study protocol
  • highly efficient
  • carbon dioxide