Effects of dietary energy and lysine levels on physiological responses, reproductive performance, blood profiles, and milk composition in primiparous sows.
Jin Su HongLin Hu FangYoo Yong KimPublished in: Journal of animal science and technology (2020)
The adequate intake of energy and lysine for primiparous sows are necessary for maternal growth of sows and growth of their progeny. This study was conducted to evaluate the effects of dietary energy and lysine levels on primiparous sows and their progeny. A total of 48 gilts (Yorkshire × Landrace), with an initial body weight (BW) of 168.1 ± 9.71 kg and at day 35 of gestation, were allotted to eight treatment groups with a 2 × 4 factorial arrangement. The first factor was metabolizable energy levels in diet (3,265 or 3,365 kcal of ME/kg), and the second factor was lysine levels in diet (gestation 0.55%, 0.65%, 0.75%, 0.85%, lactation 0.70%, 0.85%, 1.00%, 1.15%). The BW gain (p = 0.07) and backfat thickness (p = 0.09) in the gestation period showed a tendency to be increased in sows fed the high-energy diets. In the lactation period, sows fed the high-energy diets tended to be greater BW (p = 0.09) and less BW loss (p = 0.05) than those of sows fed the low-energy diets. Sows fed high-energy diets had a tendency of greater piglet weight at day 21 of lactation and greater piglet weight gain (p = 0.08 and p = 0.08, respectively). Although the blood urea nitrogen (BUN) was increased linearly as dietary lysine level increased at day 110 of gestation (Linear, p = 0.03), the BUN was decreased linearly as dietary lysine level increase at day 21 of lactation (Linear, p < 0.01). In the composition of colostrum, sows fed high-energy diets had greater casein, protein, total solid, solid not fat, and free fatty acid concentrations than those of sows fed low-energy diets (p < 0.05). Supplementation of total lysine 0.75% for gestation and 1.00% for lactation with 3,365 kcal of ME/kg energy level could be applied to the primiparous sows' diet to improve performance of sows and growth of their progeny.