A Novel Hybrid Technique Combining Improved Cepstrum Pre-Whitening and High-Pass Filtering for Effective Bearing Fault Diagnosis Using Vibration Data.
Amirmasoud KiakojouriZudi LuPatrick MirringHonor PowrieLing WangPublished in: Sensors (Basel, Switzerland) (2023)
Rolling element bearings (REBs) are an essential part of rotating machinery. A localised defect in a REB typically results in periodic impulses in vibration signals at bearing characteristic frequencies (BCFs), and these are widely used for bearing fault detection and diagnosis. One of the most powerful methods for BCF detection in noisy signals is envelope analysis. However, the selection of an effective band-pass filtering region presents significant challenges in moving towards automated bearing fault diagnosis due to the variable nature of the resonant frequencies present in bearing systems and rotating machinery. Cepstrum Pre-Whitening (CPW) is a technique that can effectively eliminate discrete frequency components in the signal whilst detecting the impulsive features related to the bearing defect(s). Nevertheless, CPW is ineffective for detecting incipient bearing defects with weak signatures. In this study, a novel hybrid method based on an improved CPW (ICPW) and high-pass filtering (ICPW-HPF) is developed that shows improved detection of BCFs under a wide range of conditions when compared with existing BCF detection methods, such as Fast Kurtogram (FK). Combined with machine learning techniques, this novel hybrid method provides the capability for automated bearing defect detection and diagnosis without the need for manual selection of the resonant frequencies. The results from this novel hybrid method are compared with a number of established BCF detection methods, including Fast Kurtogram (FK), on vibration signals collected from the project I2BS (An EU Clean Sky 2 project 'Integrated Intelligent Bearing Systems' collaboration between Schaeffler Technologies and the University of Southampton. Safran Aero Engines was the topic manager for this project) and those from three databases available in the public domain-Case Western Reserve University (CWRU), Intelligent Maintenance Systems (IMS) datasets, and Safran jet engine data-all of which have been widely used in studies of this kind. By calculating the Signal-to-Noise Ratio (SNR) of each case, the new method is shown to be effective for a much lower SNR (with an average of 30.21) compared with that achieved using the FK method (average of 14.4) and thus is much more effective in detecting incipient bearing faults. The results also show that it is effective in detecting a combination of several bearing faults that occur simultaneously under a wide range of bearing configurations and test conditions and without the requirement of further human intervention such as extra screening or manual selection of filters.
Keyphrases