Dual-Probe Activity-Based Protein Profiling Reveals Site-Specific Differences in Protein Binding of EGFR-Directed Drugs.
Wouter van BergenKristina ŽunaJan FialaElena E PohlAlbert J R HeckMarc P BaggelaarPublished in: ACS chemical biology (2024)
Comparative, dose-dependent analysis of interactions between small molecule drugs and their targets, as well as off-target interactions, in complex proteomes is crucial for selecting optimal drug candidates. The affinity of small molecules for targeted proteins is largely dictated by interactions between amino acid side chains and these drugs. Thus, studying drug-protein interactions at an amino acid resolution provides a comprehensive understanding of the drug selectivity and efficacy. In this study, we further refined the site-specific activity-based protein profiling strategy (ABPP), PhosID-ABPP, on a timsTOF HT mass spectrometer. This refinement enables dual dose-dependent competition of inhibitors within a single cellular proteome. Here, a comparative analysis of two activity-based probes (ABPs), developed to selectively target the epidermal growth factor receptor (EGFR), namely, PF-06672131 (PF131) and PF-6422899 (PF899), facilitated the simultaneous identification of ABP-specific binding sites at a proteome-wide scale within a cellular proteome. Dose-dependent probe-binding preferences for proteinaceous cysteines, even at low nanomolar ABP concentrations, could be revealed. Notably, in addition to the intrinsic affinity of the electrophilic probes for specific sites in targeted proteins, the observed labeling intensity is influenced by several other factors. These include the efficiency of cellular uptake, the stability of the probes, and their intracellular distribution. While both ABPs showed comparable labeling efficiency for EGFR, PF131 had a broader off-target reactivity profile. In contrast, PF899 exhibited a higher labeling efficiency for the ERBB2 receptor and bound to catalytic cysteines in several other enzymes, which is likely to disrupt their catalytic activity. Notably, PF131 effectively labeled ADP/ATP translocase proteins at a concentration of just 1 nm, and we found this affected ATP transport. Analysis of the effect of PF131 and its parent inhibitor Afatinib on murine translocase SLC25A4 (ANT1)-mediated ATP transport strongly indicated that PF131 (10 μM) partially blocked ATP transport. Afatinib was less efficient at inhibiting ATP transport by SLC25A4 than PF131, and the reduction of ATP transport by Afatinib was not significant. Follow-up analysis is required to evaluate the affinity of these inhibitors for ADP/ATP translocase SLC25A4 in more detail. Additionally, the analysis of different binding sites within the EGF receptor and the voltage-dependent anion channel 2 revealed secondary binding sites of both probes and provided insights into the binding poses of inhibitors on these proteins. Insights from the PhosID-ABPP analysis of these two ABPs serve as a valuable resource for understanding drug on- and off-target engagement in a dose- and site-specific manner.
Keyphrases
- epidermal growth factor receptor
- small molecule
- amino acid
- tyrosine kinase
- protein protein
- advanced non small cell lung cancer
- living cells
- small cell lung cancer
- binding protein
- single molecule
- single cell
- fluorescence imaging
- emergency department
- drug induced
- magnetic resonance imaging
- drug delivery
- computed tomography
- quantum dots
- social media
- signaling pathway
- mass spectrometry
- positron emission tomography
- reactive oxygen species
- pet imaging
- bioinformatics analysis