Engineering Alkaline-Stable Barley Stripe Mosaic Virus-Like Particles for Efficient Surface Modification.
Akash J VaidyaMruthula RammohanYu-Hsuan LeeKok Zhi LeeChe-Yu ChouZachary HartleyCorren A ScottRachel G SuslerLongfei WangL Sue Loesch-FriesMichael T HarrisKevin V SolomonPublished in: Biochemical engineering journal (2023)
Viruses and virus-like particles are powerful templates for materials synthesis because of their capacity for precise protein engineering and diverse surface functionalization. We recently developed a recombinant bacterial expression system for the production of barley stripe mosaic virus-like particles (BSMV VLPs). However, the applicability of this biotemplate was limited by low stability in alkaline conditions and a lack of chemical handles for ligand attachment. Here, we identify and validate novel residues in the BSMV Caspar carboxylate clusters that mediate virion disassembly through repulsive interactions at high pH. Point mutations of these residues to create attractive interactions that increase rod length ~2 fold, with an average rod length of 91 nm under alkaline conditions. To enable diverse chemical surface functionalization, we also introduce reactive lysine residues at the C-terminus of BSMV coat protein, which is presented on the VLP surface. Chemical conjugation reactions with this lysine proceed more quickly under alkaline conditions. Thus, our alkaline-stable VLP mutants are more suitable for rapid surface functionalization of long nanorods. This work validates novel residues involved in BSMV VLP assembly and demonstrates the feasibility of chemical functionalization of BSMV VLPs for the first time, enabling novel biomedical and chemical applications.