Improving the Recyclability of an Epoxy Resin through the Addition of New Biobased Vitrimer.
Antonio Veloso-FernándezLeire Ruiz-RubioImanol YuguerosMª Isabel Moreno-BenítezJosé Manuel LazaJosé Luis Vilas-VilelaPublished in: Polymers (2023)
In recent decades, the use of thermoset epoxy resins (ER) has spread to countless applications due to their mechanical properties, heat resistance and stability. However, these ERs are neither biodegradable nor recyclable due to their permanent crosslinked networks and usually, they are synthesized from fossil and toxic precursors. Therefore, reducing its consumption is of vital importance to the environment. On the one hand, the solution to the recyclability problems of epoxy resins can be achieved through the use of vitrimers, which have thermoset properties and can be recycled as thermoplastic materials. On the other hand, vitrimers can be made from natural sources, reducing their toxicity. In this work, a sustainable epoxy vitrimer has been efficiently synthesized, VESOV, by curing epoxidized soybean oil (ESO) with a new vanillin-derived Schiff base (VSB) dynamic hardener, aliphatic diamine (1,4-butanediamine, BDA) and using 1,2-dimethylimidazole (DMI) as an accelerator. Likewise, using the same synthesized VSB agent, a commercial epoxy resin has also been cured and characterized as ESO. Finally, different percentages (30, 50 and 70 wt%) of the same ER have been included in the formulation of VESOV, demonstrating that only including 30 wt% of ER in the formulation is able to improve the thermo-mechanical properties, maintaining the VESOV's inherent reprocessability or recyclability. In short, this is the first approach to achieve a new material that can be postulated in the future as a replacement for current commercial epoxy resins, although it still requires a minimum percentage of RE in the formulation, it makes it possible to recycle the material while maintaining good mechanical properties.