β3-Adrenoreceptors Control Mitochondrial Dormancy in Melanoma and Embryonic Stem Cells.
Maura CalvaniLorenzo CavalliniAnnalisa TondoValentina SpinelliLuisa RicciAmada PashaGennaro BrunoDaniela BuonvicinoElisabetta BigagliMarina VignoliFrancesca BianchiniLaura SartianiMaura LodoviciRoberto SemeraroFilippo FontaniFrancesco De LoguMassimo Dal MontePaola ChiarugiClaudio FavreLuca FilippiPublished in: Oxidative medicine and cellular longevity (2018)
The early phases of embryonic development and cancer share similar strategies to improve their survival in an inhospitable environment: both proliferate in a hypoxic and catecholamine-rich context, increasing aerobic glycolysis. Recent studies show that β3-adrenergic receptor (β3-AR) is involved in tumor progression, playing an important role in metastasis. Among β-adrenergic receptors, β3-AR is the last identified member of this family, and it is involved in cancer cell survival and induction of stromal reactivity in the tumor microenvironment. β3-AR is well known as a strong activator of uncoupling protein 1 (UCP1) in brown fat tissue. Interestingly, β3-AR is strongly expressed in early embryo development and in many cancer tissues. Induction of uncoupling protein 2 (UCP2) has been related to cancer metabolic switch, leading to accelerated glycolysis and reduced mitochondrial activity. In this study, for the first time, we demonstrate that β3-AR is able to promote this metabolic shift in both cancer and embryonic stem cells, inducing specific glycolytic cytoplasmic enzymes and a sort of mitochondrial dormancy through the induction of UCP2. The β3-AR/UCP2 axis induces a strong reduction of mitochondrial activity by reducing ATP synthesis and mitochondrial reactive oxygen species (mtROS) content. These effects are reverted by SR59230A, the specific β3-AR antagonist, causing an increase in mtROS. The increased level of mtROS is neutralized by a strong antioxidant activity in embryonic stem cells, but not in cancer stem cells, where it causes a dramatic reduction in tumor cell viability. These results lead to the possibility of a selective antitumor therapeutic use of SR59230A. Notably, we demonstrate the presence of β3-AR within the mitochondrial membrane in both cell lines, leading to the control of mitochondrial dormancy.