Login / Signup

Neuron-restrictive silencer factor/repressor element 1-silencing transcription factor (NRSF/REST) controls spatial K + buffering in primary cortical astrocytes.

Eleonora CentonzeAntonella MarteMartina AlbiniAnna RocchiFabrizia CescaMartina ChiacchiarettaThomas FlossPietro BaldelliStefano FerroniFabio BenfenatiPierluigi Valente
Published in: Journal of neurochemistry (2023)
Neuron-restrictive silencer factor/repressor element 1 (RE1)-silencing transcription factor (NRSF/REST) is a transcriptional repressor of a large cluster of neural genes containing RE1 motifs in their promoter region. NRSF/REST is ubiquitously expressed in non-neuronal cells, including astrocytes, while it is downregulated during neuronal differentiation. While neuronal NRSF/REST homeostatically regulates intrinsic excitability and synaptic transmission, the role of the high NRSF/REST expression levels in the homeostatic functions of astrocytes is poorly understood. Here, we investigated the functional consequences of NRSF/REST deletion in primary cortical astrocytes derived from NRSF/REST conditional knockout mice (KO). We found that NRSF/REST KO astrocyte displayed a markedly reduced activity of inward rectifying K + channels subtype 4.1 (Kir4.1) underlying spatial K + buffering that was associated with a decreased expression and activity of the glutamate transporter-1 (GLT-1) responsible for glutamate uptake by astrocytes. The effects of the impaired astrocyte homeostatic functions on neuronal activity were investigated by co-culturing wild type hippocampal neurons with NRSF/REST KO astrocytes. Interestingly, neurons experienced increased neuronal excitability at high firing rates associated with decrease afterhyperpolarization and increased amplitude of excitatory postsynaptic currents. The data indicate that astrocytic NRSF/REST directly participates in neural circuit homeostasis by regulating intrinsic excitability and excitatory transmission and that dysfunctions of NRSF/REST expression in astrocytes may contribute to the pathogenesis of neurological disorders.
Keyphrases