Elevated Levels of Serum Biomarkers Associated with Damage to the CNS Neurons and Endothelial Cells Are Linked with Changes in Brain Connectivity in Breast Cancer Patients with Vestibulo-Atactic Syndrome.
Alexandra NikolaevaMaria PospelovaVarvara KrasnikovaAlbina MakhanovaSamvel TonyanYurii KrasnopeevEvgeniya KayumovaElena VasilievaAleksandr EfimtsevAnatoliy LevchukGennadiy TrufanovMark VoynovMaxim ShevtsovPublished in: Pathophysiology : the official journal of the International Society for Pathophysiology (2023)
Vestibulo-atactic syndrome (VAS), which represents a combination of motor and vestibular disorders, can be manifested as a clinical complication of breast cancer treatment and has a significant impact on patients' quality of life. The identification of novel potential biomarkers that might help to predict the onset of VAS and its progression could improve the management of this group of patients. In the current study, the levels of intercellular cell adhesion molecule 1 (ICAM-1), platelet/endothelial cell adhesion molecule 1 (PECAM-1), NSE (neuron-specific enolase), and the antibodies recognizing NR-2 subunit of NMDA receptor (NR-2-ab) were measured in the blood serum of BC survivor patients with vestibulo-atactic syndrome (VAS) and associated with the brain connectome data obtained via functional magnetic resonance imaging (fMRI) studies. A total of 21 patients were registered in this open, single-center trial and compared to age-matched healthy female volunteers (control group) ( n = 17). BC patients with VAS demonstrated higher serum levels of ICAM-1, PECAM-1, and NSE and a lower value of NR-2-ab, with values of 654.7 ± 184.8, 115.3 ± 37.03, 49.9 ± 103.9, and 0.5 ± 0.3 pg/mL, respectively, as compared to the healthy volunteers, with 230.2 ± 44.8, 62.8 ± 15.6, 15.5 ± 6.4, and 1.4 ± 0.7 pg/mL. According to the fMRI data (employing seed-to-voxel and ROI-to-ROI methods), in BC patients with VAS, significant changes were detected in the functional connectivity in the areas involved in the regulation of postural-tonic reflexes, the coordination of movements, and the regulation of balance. In conclusion, the detected elevated levels of serum biomarkers may reveal damage to the CNS neurons and endothelial cells that is, in turn, associated with the change in the brain connectivity in this group of patients.
Keyphrases
- resting state
- functional connectivity
- end stage renal disease
- endothelial cells
- magnetic resonance imaging
- chronic kidney disease
- newly diagnosed
- ejection fraction
- cell adhesion
- peritoneal dialysis
- white matter
- randomized controlled trial
- spinal cord injury
- computed tomography
- patient reported outcomes
- multiple sclerosis
- oxidative stress
- dna methylation
- minimally invasive
- case report
- spinal cord
- big data
- phase ii