Login / Signup

Anti-neuroinflammatory Effect of Short-Chain Fatty Acid Acetate against Alzheimer's Disease via Upregulating GPR41 and Inhibiting ERK/JNK/NF-κB.

Jiaming LiuHaijun LiTianyu GongWenyang ChenShiyin MaoYu KongJiaheng YuJing Sun
Published in: Journal of agricultural and food chemistry (2020)
Alzheimer's disease (AD) is a high-incidence neurodegenerative disease in the elderly. Acetate (Ace) is a short-chain fatty acid (SCFA) with neuroprotective activity. The purpose of this study was to investigate the effects and its possible mechanisms of SCFA Ace on AD. A male APP/PS1 transgenic mouse was given intragastric administration Ace for 4 weeks. Cognitive function and microglia activation in mice were assessed. Furthermore, Ace pretreated amyloid-β (Aβ)-induced BV2 microglia, and the levels of CD11b, COX-2, and G-protein-coupled receptor 41 (GPR41) and phosphorylation of ERK, JNK, and NF-κB p65 were determined. Our results revealed that Ace significantly attenuated the cognitive impairment and decreased the CD11b level in the APP/PS1 mice. Moreover, Ace inhibited the phosphorylation of NF-κB p65, ERK, and JNK and decreased the levels of COX-2 and interleukin 1β in the Aβ-stimulated BV2 microglia. Finally, Ace increased the GPR41 level in the Aβ-stimulated BV2 cells. The finding indicated that Ace exerted antineuroinflammatory effects via the upregulation of GPR41 and suppression of the ERK/JNK/NF-κB pathway, which might provide an alternative therapy strategy of AD.
Keyphrases