Login / Signup

Cysteine-Assisted Click-Chemistry for Proximity-Driven, Site-Specific Acetylation of Histones.

Cláudia F AfonsoMarta C MarquesJoão P M AntónioCarlos CordeiroPedro M P GoisPedro M S D CalGonçalo J L Bernardes
Published in: Angewandte Chemie (International ed. in English) (2022)
Post-translational modifications of histones are essential in the regulation of chromatin structure and function. Among these modifications, lysine acetylation is one of the most established. Earlier studies relied on the use of chromatin containing heterogeneous mixtures of histones acetylated at multiple sites. Differentiating the individual contribution of single acetylation events towards chromatin regulation is thus of great relevance. However, it is difficult to access homogeneous samples of histones, with a single acetylation, in sufficient quantities for such studies. By engineering histone H3 with a cysteine in proximity of the lysine of interest, we demonstrate that conjugation with maleimide-DBCO followed by a strain-promoted alkyne-azide cycloaddition reaction results in the acetylation of a single lysine in a controlled, site-specific manner. The chemical precision offered by our click-to-acetylate approach will facilitate access to and the study of acetylated histones.
Keyphrases
  • histone deacetylase
  • gene expression
  • dna damage
  • transcription factor
  • genome wide
  • fluorescent probe
  • magnetic resonance imaging
  • living cells