The bacterial microbiome and metabolome in caries progression and arrest.
Thamirys da Costa RosaAline de Almeida NevesM Andrea Azcarate-PerilKimon DivarisDi WuHunyong ChoKevin MossBruce J PasterTsute ChenLiana B Freitas-FernandesTatiana K S FidalgoRicardo Tadeu LopesAna Paula ValenteRoland R ArnoldApoena de Aguiar RibeiroPublished in: Journal of oral microbiology (2021)
Aim: This in vivo experimental study investigated bacterial microbiome and metabolome longitudinal changes associated with enamel caries lesion progression and arrest. Methods: We induced natural caries activity in three caries-free volunteers prior to four premolar extractions for orthodontic reasons. The experimental model included placement of a modified orthodontic band on smooth surfaces and a mesh on occlusal surfaces. We applied the caries-inducing protocol for 4- and 6-weeks, and subsequently promoted caries lesion arrest via a 2-week toothbrushing period. Lesions were verified clinically and quantitated via micro-CT enamel density measurements. The biofilm microbial composition was determined via 16S rRNA gene Illumina sequencing and NMR spectrometry was used for metabolomics. Results: Biofilm maturation and caries lesion progression were characterized by an increase in Gram-negative anaerobes, including Veillonella and Prevotella. Streptococcus was associated caries lesion progression, while a more equal distribution of Streptococcus, Bifidobacterium, Atopobium, Prevotella, Veillonella, and Saccharibacteria (TM7) characterized arrest. Lactate, acetate, pyruvate, alanine, valine, and sugars were more abundant in mature biofilms compared to newly formed biofilms. Conclusions: These longitudinal bacterial microbiome and metabolome results provide novel mechanistic insights into the role of the biofilm in caries progression and arrest and offer promising candidate biomarkers for validation in future studies.
Keyphrases
- oral health
- candida albicans
- biofilm formation
- pseudomonas aeruginosa
- staphylococcus aureus
- cell cycle
- gram negative
- randomized controlled trial
- high resolution
- microbial community
- multidrug resistant
- clinical trial
- computed tomography
- magnetic resonance
- oxidative stress
- genome wide
- dna methylation
- magnetic resonance imaging
- study protocol
- positron emission tomography
- preterm birth
- diabetic rats
- single molecule
- transcription factor