Login / Signup

Analysis of goat PPP6C mRNA profile, detection of genetic variations, and their associations with litter size.

Yangyang BaiDidi BoYutian BiEbadu ArebHaijing ZhuChuanying PanXianyong Lan
Published in: Animal reproduction science (2024)
The Protein Phosphatase 6 Catalytic Subunit (PPP6C) is evolutionarily a conserved gene in eukaryotes known to play a significant role in mammalian reproduction. This study aimed to investigate expression patterns of PPP6C and explore its association with litter size in Shaanbei white cashmere (SBWC) goats. Initially, we determined the mRNA expression levels of PPP6C in both male and female goats across multiple tissues. The results showed that PPP6C mRNA was expressed in multiple tissues, with higher levels in the testis and fallopian tubes, suggesting its involvement in goat reproduction. Additionally, we identified a novel 19 bp InDel within the PPP6C gene in a population of 1030 SBWC goats, which exhibited polymorphism. Statistical analysis revealed a significant association between the19 bp InDel mutation and litter size (P < 0.05). Subsequent, bioinformatics analysis, including linkage disequilibrium (LD) block and selective scanning, highlighted the linkage tendency among most InDel loci did not stand out within B-8 block, there were still some InDel loci linked to the 19 bp within a relatively narrow region. Furthermore, comparative analysis with Bezoars, these selective signals all indicated that this gene was under higher selection pressure, implying that the 19 bp InDel locus within the PPP6C is potentially associated with domesticated traits, particularly in relation to litter size. The results of the present study suggest that the PPP6C is a vital candidate gene affecting prolificacy in goats, with implications for selective breeding programs for goat breeds.
Keyphrases
  • genome wide
  • copy number
  • dna methylation
  • gene expression
  • genome wide identification
  • binding protein
  • public health
  • poor prognosis
  • transcription factor
  • genome wide association study
  • label free
  • high density