Reduction-Responsive and Multidrug Deliverable Albumin Nanoparticles: An Antitumor Drug to Abraxane against Human Pancreatic Tumor-Bearing Mice.
Naoki HirakawaYu IshimaRyo KinoshitaRyuto NakanoVictor Tuan Giam ChuangHidenori AndoTaro ShimizuKeiichiro OkuhiraToru MaruyamaMasaki OtagiriTatsuhiro IshidaPublished in: ACS applied bio materials (2021)
Many macromolecular antitumor drugs were developed based on the enhanced permeability and retention (EPR) effect, for example, albumin-bound paclitaxel nanoparticles (nab-PTX and Abraxane) and pegylated liposomal doxorubicin (Doxil). However, these EPR effect-based therapeutic systems are less effective in malignant tumors with low vascular permeability, such as pancreatic tumors. Because the EPR effect depends on nanoparticles' size, we first determined nanoparticles' size associated with a high tumor-targeting rate in a human pancreatic tumor xenograft model with low vascular permeability. Abraxane appears to behave as an albumin monomer (7 nm) in the blood circulation following intravenous injection. The in vitro and in vivo tumor-targeted delivery and antitumor activity of PTX-loaded albumin nanoparticles were significantly improved by optimizing the mean nanoparticle diameter to 30 nm. Furthermore, nitric oxide was added to 30 nm PTX-loaded albumin nanoparticles to examine the feasibility of albumin nanoparticles as a platform for multiple drug delivery. Their antitumor effect was evaluated in an orthotopic transplantation mouse model of a human pancreatic tumor. The nitric oxide PTX-loaded 30 nm albumin nanoparticle treatment on model mice achieved a significantly higher survival rate than Abraxane treatment. These findings suggest that 30 nm albumin nanoparticles have a high therapeutic effect as a useful platform for multiple drugs against human pancreatic tumors.
Keyphrases
- endothelial cells
- drug delivery
- nitric oxide
- cancer therapy
- photodynamic therapy
- mouse model
- pluripotent stem cells
- emergency department
- drug resistant
- high throughput
- walled carbon nanotubes
- skeletal muscle
- high dose
- combination therapy
- insulin resistance
- high fat diet induced
- mass spectrometry
- adipose tissue
- cell therapy
- drug release
- wild type
- epidermal growth factor receptor
- light emitting