Login / Signup

Citrus Flavanones Enhance β-Carotene Uptake in Vitro Experiment Using Caco-2 Cell: Structure-Activity Relationship and Molecular Mechanisms.

Zhongyuan ZhangMeimei NieChunquan LiuNing JiangChunju LiuDajing Li
Published in: Journal of agricultural and food chemistry (2019)
Flavonoids can interfere with the absorption of carotenoids. In this study, the inherent mechanisms of 12 citrus flavanones for β-carotene (Bc) cellular uptake and the structure-activity relationship were investigated. The results showed that multiple hydroxyl groups had the lowest promoting effect. O-Glycosylation at C7 of the A ring led to the greatest promoting effect on Bc absorption. O-Glycosylation at C7 exhibited a strong affinity with the cell membrane and subsequently fluidized the cell membrane. Aglycon molecules significantly induced transient increases of paracellular permeability by decreasing tight junction proteins (ZO-1, claudin-1) expression. In addition, citrus flavanones might enhance scavenger receptor class B type I (SR-BI) expression via their actions as agonists of peroxisome proliferator-activated receptor-gamma (PPARγ). Catechol structure in the B-ring attenuated the activate action of SR-BI expression. The structure-dependent membrane permeability and activation of specific membrane proteins are mechanistically associated with the promoting effect on Bc cellular uptake by citrus flavanones.
Keyphrases