Login / Signup

Role of source-to-sink transport of methionine in establishing seed protein quantity and quality in legumes.

Matthew G GarneauMing-Zhu LuJan GrantMechthild Tegeder
Published in: Plant physiology (2022)
Grain legumes such as pea (Pisum sativum L.) are highly valued as a staple source of protein for human and animal nutrition. However, their seeds often contain limited amounts of high-quality, sulfur (S) rich proteins, caused by a shortage of the S-amino acids cysteine and methionine. It was hypothesized that legume seed quality is directly linked to the amount of organic S transported from leaves to seeds, and imported into the growing embryo. We expressed a high-affinity yeast (Saccharomyces cerevisiae) methionine/cysteine transporter (Methionine UPtake 1) in both the pea leaf phloem and seed cotyledons and found source-to-sink transport of methionine but not cysteine increased. Changes in methionine phloem loading triggered improvements in S uptake and assimilation and long-distance transport of the S compounds, S-methylmethionine and glutathione. In addition, nitrogen and carbon assimilation and source-to-sink allocation were upregulated, together resulting in increased plant biomass and seed yield. Further, methionine and amino acid delivery to individual seeds and uptake by the cotyledons improved, leading to increased accumulation of storage proteins by up to 23%, due to both higher levels of S-poor and, most importantly, S-rich proteins. Sulfate delivery to the embryo and S assimilation in the cotyledons were also upregulated, further contributing to the improved S-rich storage protein pools and seed quality. Overall, this work demonstrates that methionine transporter function in source and sink tissues presents a bottleneck in S allocation to seeds and that its targeted manipulation is essential for overcoming limitations in the accumulation of high-quality seed storage proteins.
Keyphrases
  • amino acid
  • saccharomyces cerevisiae
  • gene expression
  • physical activity
  • wastewater treatment
  • pregnant women
  • drug delivery
  • induced pluripotent stem cells
  • pluripotent stem cells