Artemether Activation of AMPK/GSK3β(ser9)/Nrf2 Signaling Confers Neuroprotection towards β-Amyloid-Induced Neurotoxicity in 3xTg Alzheimer's Mouse Model.
Shuai LiXia ZhaoPhilip LazaroviciWenhua ZhengPublished in: Oxidative medicine and cellular longevity (2019)
Alzheimer's disease is a severe neurodegenerative disease. Multiple factors involving neurofibrillary tangles and amyloid-β plaques lead to the progression of the AD, generated by aggregated hyperphosphorylated Tau protein. Inflammation, mitochondrial dysfunction, and oxidative stress play a significant role in the progression of AD. It has been therefore suggested that the multifactorial nature of AD pathogenesis requires the design of antioxidant drugs with a broad spectrum of neuroprotective activities. For this reason, the use of natural products, characterized by multiple pharmacological properties is advantageous as AD-modifying drugs over the single-targeted chemicals. Artemether, a peroxide sesquiterpenoid lipid-soluble compound, has been used in the clinic as an antimalarial drug. Also, it exhibits potent anti-inflammatory and antioxidant activities. Here, we report the neuroprotective effects of Artemether towards Aβ-induced neurotoxicity in neuronal cell cultures. A temporal correlation was found between Artemether neuroprotection towards Aβ-induced neurotoxicity and AMPK/GSK3β phosphorylation activity and increased expression of the activated Nrf2 signaling pathway. In 3xTg-AD mice, Artemether attenuated learning and memory deficits, inhibited cortical neuronal apoptosis and glial activation, inhibited oxidative stress through decrease of lipid peroxidation and increased expression of SOD, and reduced Aβ deposition and tau protein phosphorylation. Moreover, in 3xTg-AD mice, Artemether induced phosphorylation of the AMPK/GSK3β pathway which activated Nrf2, increasing the level of antioxidant protein HO-1. These activities probably produced the antioxidant and anti-inflammatory effects responsible for the neuroprotective effects of Artemether in the 3xTg-AD mouse model. These findings propose Artemether as a new drug for the treatment of AD disease.
Keyphrases
- oxidative stress
- diabetic rats
- anti inflammatory
- signaling pathway
- cerebral ischemia
- mouse model
- dna damage
- drug induced
- induced apoptosis
- ischemia reperfusion injury
- high glucose
- protein kinase
- poor prognosis
- binding protein
- traumatic brain injury
- brain injury
- primary care
- cognitive decline
- drug delivery
- single cell
- stem cells
- epithelial mesenchymal transition
- endothelial cells
- type diabetes
- blood brain barrier
- cerebrospinal fluid
- spinal cord
- high fat diet induced
- protein protein
- insulin resistance