Ketone ester supplementation of Atkins-type diet prolongs survival in an orthotopic xenograft model of glioblastoma.
Hassan AzariAngela PoffDominic P D'AgostinoBrent A ReynoldsPublished in: Anatomy & cell biology (2024)
Heavy reliance on glucose metabolism and a reduced capacity to use ketone bodies makes glioblastoma (GBM) a promising candidate for ketone-based therapies. Ketogenic diet (KD) is well-known for its promising effects in controlling tumor growth in GBM. Moreover, synthetic ketone ester (KE) has demonstrated to increase blood ketone levels and enhance animal survival in a metastatic VM-M3 murine tumor model. Here, we compared the efficacy of a KE-supplemented Atkins-type diet (ATD-KE) to a classic KD in controlling tumor progression and enhancing survival in a clinically relevant orthotopic patient-derived xenograft GBM model. Our findings demonstrate that ATD-KE preserves body weight (percent change from the baseline; 112±2.99 vs. 116.9±2.52 and 104.8±3.67), decreases blood glucose (80.55±0.86 vs. 118.6±9.51 and 52.35±3.89 mg/dl), and increases ketone bodies in blood (1.15±0.03 mM vs. 0.55±0.04 and 2.66±0.21 mM) and brain tumor tissue (3.35±0.30 mM vs. 2.04±0.3 and 4.25±0.25 mM) comparable to the KD (results presented for ATD-KE vs. standard diet [STD] and KD, respectively). Importantly, the ATD-KE treatment significantly enhanced survival compared to the STD and was indistinguishable from the KD (47 days in STD vs. 56 days in KD and ATD-KE), suggesting that a nutritionally balanced low carbohydrate ATD combined with KE may be as effective as the KD alone in reducing brain tumor progression. Overall, these data support the rationale for clinical testing of KE-supplemented low-carb diet as an adjunct treatment for brain tumor patients.
Keyphrases
- physical activity
- weight loss
- blood glucose
- body weight
- poor prognosis
- squamous cell carcinoma
- end stage renal disease
- newly diagnosed
- type diabetes
- multiple sclerosis
- long non coding rna
- skeletal muscle
- prognostic factors
- combination therapy
- peritoneal dialysis
- glycemic control
- deep learning
- smoking cessation
- artificial intelligence