Conjugation of Human β-Defensin 2 to Spike Protein Receptor-Binding Domain Induces Antigen-Specific Protective Immunity against Middle East Respiratory Syndrome Coronavirus Infection in Human Dipeptidyl Peptidase 4 Transgenic Mice.
Ju KimYe Lin YangYongsu JeongJeong-Woo SeoPublished in: Vaccines (2020)
Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe acute respiratory symptoms. Due to the lack of medical countermeasures, effective and safe vaccines against MERS-CoV infection are urgently required. Although different types of candidate vaccines have been developed, their immunogenicity is limited, and the dose and administration route need optimization to achieve optimal protection. We here investigated the potential use of human β-defensin 2 (HBD 2) as an adjuvant to enhance the protection provided by MERS-CoV vaccination. We found that immunization of human dipeptidyl peptidase 4 (hDPP4)-transgenic (hDPP4-Tg) mice with spike protein receptor-binding domain (S RBD) conjugated with HBD 2 (S RBD-HBD 2) induced potent antigen (Ag)-specific adaptive immune responses and protected against MERS-CoV infection. In addition, immunization with S RBD-HBD 2 alleviated progressive pulmonary fibrosis in the lungs of MERS-CoV-infected hDPP4-Tg mice and suppressed endoplasmic reticulum stress signaling activation upon viral infection. Compared to intramuscular administration, intranasal administration of S RBD-HBD 2 induced more potent mucosal IgA responses and was more effective for protecting against intranasal MERS-CoV infection. In conclusion, our findings suggest that HBD 2 potentiates Ag-specific immune responses against viral Ag and can be used as an adjuvant enhancing the immunogenicity of subunit vaccine candidates against MERS-CoV.
Keyphrases
- respiratory syndrome coronavirus
- sars cov
- coronavirus disease
- endothelial cells
- immune response
- endoplasmic reticulum stress
- high glucose
- induced pluripotent stem cells
- pluripotent stem cells
- early stage
- pulmonary fibrosis
- healthcare
- type diabetes
- quantum dots
- induced apoptosis
- multiple sclerosis
- toll like receptor
- diabetic rats
- transcription factor
- dna binding
- small molecule
- risk assessment
- high resolution
- drug induced
- high fat diet induced
- inflammatory response
- atomic force microscopy
- single molecule
- highly efficient