Login / Signup

Is substrate choice an overlooked variable in ecotoxicology experiments?

Georgia M SinclairMichela Di GiannantonioOliver A H JonesSara M Long
Published in: Environmental monitoring and assessment (2023)
It is crucial to understand the effects caused by experimental parameters such as temperature, light, and food type on lab and field-based ecotoxicology experiments, as these variables, and combinations thereof, can affect results. The type of substrate used in exposure experiments, however, is generally assumed to have no effect. This may not always be correct. The metabolic changes in the freshwater crustacean, Austrochiltonia subtenuis exposed to copper, using three common substrates, gauze; toilet paper; and cellulose were investigated. Substrate alone did not affect survival, but each substrate elicited a different metabolic response and adult and juvenile amphipods had different substrate preferences. Several classes of metabolites were shown to change in response to different substrates and toxicant. These included disaccharides, monosaccharides, fatty acids, and tricarboxylic acid cycle intermediates. The results illustrate that metabolomic responses can differ in response to experimental factors that were previously thought not to be significant. In fact, our data indicate that substrate should be viewed as an experimental factor as important to control for as more well-known confounders such as temperature or food, thus challenging the current paradigm. Assuming substrate type has no effect on the experiment could potentially lead to errors in contaminant toxicity assessments. We propose that ideal good practise would be that all experimental factors should be evaluated for their potential influence on metabolomic profiles prior to contaminant response experiments being undertaken.
Keyphrases
  • amino acid
  • fatty acid
  • human health
  • oxidative stress
  • machine learning
  • electronic health record
  • high resolution
  • climate change
  • deep learning
  • ionic liquid
  • data analysis
  • free survival
  • single molecule