Login / Signup
Kidney in diabetic state is more sensitive to ischemic acute kidney injury (AKI). However, the underlying mechanisms remain unclear. Herein, we examined the impact of diabetes mellitus on thioredoxin-interacting protein (TXNIP) expression and whether mediated NLRP3 activation was associated with renal ischemia/reperfusion- (I/R-) induced AKI. In an in vivo model, streptozotocin-induced diabetic rats showed higher susceptibility to I/R injury with increased TXNIP expression, which was significantly attenuated by resveratrol (RES) treatment (10 mg/kg intraperitoneal daily injection for 7 consecutive days prior to I/R induction). RES treatment significantly inhibited TXNIP binding to NLRP3 in diabetic rats subjected to renal I/R injury. Furthermore, RES treatment significantly reduced cleaved caspase-1 expression and production of IL-1β and IL-18. In an in vitro study using cultured human kidney proximal tubular cell (HK-2 cells) in high glucose condition (HG, 30 mM) subjected to hypoxia/reoxygenation (H/R), HG combined H/R (HH/R) stimulated TXNIP expression which was accompanied by increased NLRP3 expression, ROS generation, caspase-1 activity and IL-1β levels, and aggravated HK-2 cells apoptosis. All these changes were significantly attenuated by TXNIP RNAi and RES treatment. In conclusion, our results demonstrate that TXNIP-mediated NLRP3 activation through oxidative stress is a key signaling mechanism in the susceptibility to AKI in diabetic models.
Keyphrases