Structural Basis of CO₂ Adsorption in a Flexible Metal-Organic Framework Material.
Andrew J AllenWinnie Wong-NgEric CockayneJeffrey T CulpChristopher MatrangaPublished in: Nanomaterials (Basel, Switzerland) (2019)
This paper reports on the structural basis of CO₂ adsorption in a representative model of flexible metal-organic framework (MOF) material, Ni(1,2-bis(4-pyridyl)ethylene)[Ni(CN)₄] (NiBpene or PICNIC-60). NiBpene exhibits a CO₂ sorption isotherm with characteristic hysteresis and features on the desorption branch that can be associated with discrete structural changes. Various gas adsorption effects on the structure are demonstrated for CO₂ with respect to N₂, CH₄ and H₂ under static and flowing gas pressure conditions. For this complex material, a combination of crystal structure determination and density functional theory (DFT) is needed to make any real progress in explaining the observed structural transitions during adsorption/desorption. Possible enhancements of CO₂ gas adsorption under supercritical pressure conditions are considered, together with the implications for future exploitation. In situ operando small-angle neutron and X-ray scattering, neutron diffraction and X-ray diffraction under relevant gas pressure and flow conditions are discussed with respect to previous studies, including ex situ, a priori single-crystal X-ray diffraction structure determination. The results show how this flexible MOF material responds structurally during CO₂ adsorption; single or dual gas flow results for structural change remain similar to the static (Sieverts) adsorption case, and supercritical CO₂ adsorption results in enhanced gas uptake. Insights are drawn for this representative flexible MOF with implications for future flexible MOF sorbent design.
Keyphrases
- metal organic framework
- aqueous solution
- crystal structure
- room temperature
- structural basis
- density functional theory
- high resolution
- electron microscopy
- ionic liquid
- emergency department
- squamous cell carcinoma
- computed tomography
- cross sectional
- current status
- molecular dynamics
- magnetic resonance imaging
- mass spectrometry
- solid phase extraction
- molecular docking
- risk assessment
- heavy metals
- lymph node metastasis
- simultaneous determination
- tandem mass spectrometry