In Silico Study of Membrane Lipid Composition Regulating Conformation and Hydration of Influenza Virus B M2 Channel.
Yue ZhangHong-Xing ZhangQing-Chuan ZhengPublished in: Journal of chemical information and modeling (2020)
The proton conduction of transmembrane influenza virus B M2 (BM2) proton channel is possibly mediated by the membrane environment, but the detailed molecular mechanism is challenging to determine. In this work, how membrane lipid composition regulates the conformation and hydration of BM2 channel is elucidated in silico. The appearance of several important hydrogen-bond networks has been discovered, as the addition of negatively charged lipid palmitoyloleoyl phosphatidylglycerol (POPG) and cholesterol reduces membrane fluidity and augments membrane rigidity. A more rigid membrane environment is beneficial to expand the channel, allow more water to enter the channel, promote channel hydration, and then even affect the proton conduction facilitated by the hydrated channel. Thus, membrane environment could be identified as an important influence factor of conformation and hydration of BM2. These findings can provide a unique perspective for understanding the mechanism of membrane lipid composition regulating conformation and hydration of BM2 and have important significance to the further study of anti-influenza virus B drugs.
Keyphrases