Login / Signup

Neutralization Short-Circuiting with Weak Electrolytes Erodes the Efficiency of Bipolar Membranes.

Hieu Q DinhWei Lun TohAn T ChuYogesh Surendranath
Published in: ACS applied materials & interfaces (2023)
Bipolar membranes (BPMs) are critical components of a variety of electrochemical energy technologies. Many electrochemical applications require the use of buffers to maintain stable, nonextreme pH environments, yet the impact of buffers or weak acids/bases on the electrochemical behavior of BPMs remains poorly understood. Our data for a cell containing weak electrolytes is consistent with internal pH gradients within the anion exchange membrane (AEM) or cation exchange membrane (CEM) component of the BPM that form via ionic short-circuiting processes at open-circuit. Short-circuiting results from the coupling of co-ion crossover and parasitic neutralization and leads to buffering of the bipolar interface. This phenomenon, which we term neutralization short-circuiting , serves to erode BPM efficiency by attenuating the open-circuit membrane voltage and introducing parasitic reverse bias currents associated with weak acid/base dissociation at the interface. These findings establish a mechanistic basis for the operation of BPM cells in the presence of weak acid/base electrolytes.
Keyphrases