Login / Signup

Novel Polyurethane-Based Systems Modified with Starch and Phase Change Materials for Bone Tissue Regeneration.

Klaudia OrdonPiotr SzatkowskiWojciech PiekarczykElżbieta PamułaKinga Pielichowska
Published in: Polymers (2023)
Novel polyurethane-based materials have been synthesized by a two-step process using poly(ε-caprolactone) diol (PCL) and 1,3-propanediol/starch (PDO/ST) systems as chain extenders/cross-linkers and 1,6-hexamethylane diisocyante (HDI) as a potential material for bone tissue replacement or bone cements. A poly(ethylene glycol)/starch (PEG/ST) system has been applied as a form-stable phase change material (PCM) to decrease the maximum setting temperature, while hydroxyapatite (HAp) has been used as a bioactive nanofiller. FTIR and SEM-EDX analyses were performed to investigate the structure, surface morphology, and thermal properties of the obtained polyurethanes. FTIR spectroscopy confirmed the chemical structure of the synthesized polyurethanes. SEM-EDX analysis confirmed the incorporation of starch/hydroxyapatite into the polyurethane matrix. Modification with PCMs based on PEG or PEG/starch systems allowed for a decrease in the maximum setting temperature of PUs from 6 to 7.6 °C, depending on the type of PCM used. Thus, the obtained polyurethanes show a good energy storage effect and a good application potential for the synthesis of multifunctional bioactive materials for future use as bone cements.
Keyphrases
  • lactic acid
  • bone regeneration
  • tissue engineering
  • bone mineral density
  • drug delivery
  • soft tissue
  • bone loss
  • stem cells
  • postmenopausal women
  • high resolution
  • data analysis