Inhibition of microglial activation in rats attenuates paraventricular nucleus inflammation in Gαi2 protein-dependent, salt-sensitive hypertension.
Jesse D MoreiraParul ChaudharyAlissa A FrameFranco PuleoKayla M NistEric A AbkinTara L MooreJonique C GeorgeRichard D WainfordPublished in: Experimental physiology (2019)
The central mechanisms underlying salt-sensitive hypertension, a significant public health issue, remain to be established. Researchers in our laboratory have reported that hypothalamic paraventricular nucleus (PVN) Gαi2 proteins mediate the sympathoinhibitory and normotensive responses to high sodium intake in salt-resistant rats. Given the recent evidence of central inflammation in animal models of hypertension, we hypothesized that PVN inflammation contributes to Gαi2 protein-dependent, salt-sensitive hypertension. Male Sprague-Dawley rats received chronic intracerebroventricular infusions of a targeted Gαi2 or control scrambled oligodeoxynucleotide (ODN) and were maintained for 7 days on a normal-salt (NS; 0.6% NaCl) or high-salt (HS; 4% NaCl) diet; in subgroups on HS, intracerebroventricular minocycline (microglial inhibitor) was co-infused with ODNs. Radiotelemetry was used in subgroups of rats to measure mean arterial pressure (MAP) chronically. In a separate group of rats, plasma noradrenaline, plasma renin activity, urinary angiotensinogen and mRNA levels of the PVN pro-inflammatory cytokines TNFα, IL-1β and IL-6 and the anti-inflammatory cytokine IL-10 were assessed. In additional groups, immunohistochemistry was performed for markers of PVN and subfornical organ microglial activation and cytokine levels and PVN astrocyte activation. High salt intake evoked salt-sensitive hypertension, increased plasma noradrenaline, PVN pro-inflammatory cytokine mRNA upregulation, anti-inflammatory cytokine mRNA downregulation and PVN-specific microglial activation in rats receiving a targeted Gαi2 but not scrambled ODN. Minocycline co-infusion significantly attenuated the increase in MAP and abolished the increase in plasma noradrenaline and inflammation in Gαi2 ODN-infused animals on HS. Our data suggest that central Gαi2 protein prevents microglial-mediated PVN inflammation and the development of salt-sensitive hypertension.
Keyphrases
- blood pressure
- oxidative stress
- anti inflammatory
- public health
- inflammatory response
- lipopolysaccharide induced
- lps induced
- neuropathic pain
- machine learning
- rheumatoid arthritis
- cell proliferation
- poor prognosis
- cancer therapy
- body mass index
- amino acid
- spinal cord injury
- weight loss
- weight gain
- angiotensin ii
- dengue virus
- data analysis
- drug induced
- big data
- aedes aegypti