Login / Signup

Preen oil and bird fitness: a critical review of the evidence.

Gregorio Moreno-Rueda
Published in: Biological reviews of the Cambridge Philosophical Society (2017)
The uropygial gland is a holocrine complex exclusive to birds that produces an oleaginous secretion (preen oil) whose function is still debated. Herein, I examine critically the evidence for the many hypotheses of potential functions of this gland. The main conclusion is that our understanding of this gland is still in its infancy. Even for functions that are considered valid by most researchers, real evidence is scarce. Although it seems clear that preen oil contributes to plumage maintenance, we do not know whether this is due to a role in reducing mechanical abrasion or in reducing feather degradation by keratinophilic organisms. Evidence for a function against pathogenic bacteria is mixed, as preen oil has been demonstrated to act against bacteria in vitro, but not in vivo. Nor is it clear whether preen oil can combat pathogenic bacteria on eggshells to improve hatching success. Studies on the effect of preen oil against dermatophytes are very scarce and there is no evidence of a function against chewing lice. It seems clear, however, that preen oil improves waterproofing, but it is unclear whether this acts by creating a hydrophobic layer or simply by improving plumage structure. Several hypotheses proposed for the function of preen oil have been poorly studied, such as reduction of drag in flight. Similarly, we do not know whether preen oil functions as repellent against predators or parasites, makes birds unpalatable, or functions to camouflage birds with ambient odours. On the other hand, a growing body of work shows the important implications of volatiles in preen oil with regard to social communication in birds. Moreover, preen oil clearly alters plumage colouration. Finally, studies examining the impact of preen oil on fitness are lacking, and the costs or limitations of preen-oil production also remain poorly known. The uropygial gland appears to have several non-mutually exclusive functions in birds, and thus is likely to be subject to several selective pressures. Therefore, future studies should consider how the inevitable trade-offs among different functions drive the evolution of uropygial gland secretions.
Keyphrases
  • fatty acid
  • physical activity
  • mental health
  • risk assessment
  • body mass index
  • body composition
  • mass spectrometry
  • high resolution
  • finite element