RNA interference in the Asian Longhorned Beetle:Identification of Key RNAi Genes and Reference Genes for RT-qPCR.
Thais B RodriguesRamesh Kumar DhandapaniJian J DuanSubba Reddy PalliPublished in: Scientific reports (2017)
Asian Longhorned Beetle (ALB) Anoplophora glabripennis is a serious invasive forest pest in several countries including the United States, Canada, and Europe. RNA interference (RNAi) technology is being developed as a novel method for pest management. Here, we identified the ALB core RNAi genes including those coding for Dicer, Argonaute, and double-stranded RNA-binding proteins (dsRBP) as well as for proteins involved in dsRNA transport and the systemic RNAi. We also compared expression of six potential reference genes that could be used to normalize gene expression and selected gapdh and rpl32 as the most reliable genes among different tissues and stages of ALB. Injection of double-stranded RNA (dsRNA) targeting gene coding for inhibitor of apoptosis (IAP) into larvae and adults resulted in a significant knockdown of this gene and caused the death of 90% of the larvae and 100% of adults. No mortality of both larvae and adults injected with dsRNA targeting gene coding for green fluorescence protein (GFP, as a negative control) was observed. These data suggest that functional RNAi machinery exists in ALB and a potential RNAi-based method could be developed for controlling this insect.
Keyphrases
- genome wide identification
- genome wide
- gene expression
- bioinformatics analysis
- dna methylation
- genome wide analysis
- copy number
- binding protein
- nucleic acid
- aedes aegypti
- poor prognosis
- oxidative stress
- type diabetes
- cell death
- human health
- risk assessment
- drug delivery
- risk factors
- long non coding rna
- climate change
- signaling pathway
- zika virus
- drug induced
- data analysis