Recycled Plastic Content Quantified through Aggregation-Induced Emission.
Zoé O G SchynsThomas M BennettMichael P ShaverPublished in: ACS sustainable chemistry & engineering (2022)
The linearity of the plastics economy is wasteful and polluting. To encourage recycling and decrease diversion to landfill, new legislation within the EU and UK will tax single-use plastic products made with less than 30% recycled plastic. At present, quantitative determination of recycled content is elusive and existing methods are inconsistent. We present a fluorescence-based analytical technique to determine recycled content in plastic and (single use) packaging. Bathochromic shifts resulting from aggregation of the fluorescent brightener 4,4'-bis(2-benzoxazolyl) stilbene (BBS) in three commodity plastics [high-density polyethylene, polypropylene, and poly(ethylene terephthalate)] at loadings ≤0.5 wt % were used to systematically quantify simulated recycled contents as low as 10 wt %. Linear correlations were found between recycled content and three fluorescence-based properties: emission, lifetime, and resulting color. We demonstrate how this multi-branched verification system is completely independent of sample dimensions and processing conditions, has a negligible effect on polymer properties, and is inexpensive and highly compatible with existing recycling infrastructure.