Login / Signup

Screening and optimization of potential injection vehicles for storage of retinal pigment epithelial stem cell before transplantation.

Yangzi TianRichard DavisMichael R ZoncaJeffrey H SternSally TempleYubing Xie
Published in: Journal of tissue engineering and regenerative medicine (2018)
Retinal pigment epithelial (RPE) cells are highly specialized neural cells that have several functions essential for vision. Progressive deterioration of RPE cells in elderly individuals can result in visual impairment and ultimately the blinding disease age-related macular degeneration. Subretinal transplantation of stem cell-derived RPE cell suspensions is being explored as a strategy to recover the damaged retina and improve vision. This approach may be improved by developing a vehicle that increases postinjection cell viability and distribution and integration of RPE cells. In this study, Food and Drug Administration-approved natural polymers, including alginate, methylcellulose, and hyaluronic acid (HA), were examined for performance as cell vehicles for adult human RPE stem cells (RPESCs). We compared the effect of RPESC storage as a cell suspension in these delivery vehicles for 1-96 hr at different temperatures on subsequent cell performance in a cell culture model. RPESC survival, attachment, distribution, proliferation, and differentiation into RPE cells were monitored by microscopy over the course of 8 weeks. Our in vitro results demonstrate that RPESC suspension in a 0.2% HA solution promotes better initial cell distribution, proliferation, cobblestone formation, and expression of RPE cell markers (microphthalmia-associated transcription factor and orthodenticle homeobox 2) after 96 hr of storage. These data suggest that HA addition to the vehicle can significantly enhance RPESC performance in vitro and is a promising strategy to pursue an improved delivery vehicle supporting in vivo RPE cell transplantation.
Keyphrases