Login / Signup

Leucinostatins from Ophiocordyceps spp. and Purpureocillium spp. Demonstrate Selective Antiproliferative Effects in Cells Representing the Luminal Androgen Receptor Subtype of Triple Negative Breast Cancer.

Yun-Seo KilApril L RisingerCora L PetersenSusan L MooberryRobert H Cichewicz
Published in: Journal of natural products (2020)
The structures of four leucinostatin analogues (1-4) from Ophiocordyceps spp. and Purpureocillium spp. were determined together with six known leucinostatins [leucinostatins B (5), A (6), B2 (7), A2 (8), F (9), and D (10)]. The structures of the metabolites were established using a combination of analytical methods including HRESIMS and MS/MS experiments, 1D and 2D NMR spectroscopy, chiral HPLC, and advanced Marfey's analysis of the acid hydrolysate, as well as additional empirical and chemical methods. Compounds 1-10 were evaluated for their biological effects on triple negative breast cancer (TNBC) cells. Leucinostatins 1-10 showed selective cytostatic activities in MDA-MB-453 and SUM185PE cells representing the luminal androgen receptor subtype of TNBC. This selective activity motivated further investigation into the mechanism of action of leucinostatin B (5). The results demonstrate that this peptidic fungal metabolite rapidly inhibits mTORC1 signaling in leucinostatin-sensitive TNBC cell lines, but not in leucinostatin-resistant cells. Leucinostatins have been shown to repress mitochondrial respiration through inhibition of the ATP synthase, and we demonstrated that both the mTORC1 signaling and LAR-selective activities of 5 were recapitulated by oligomycin. Thus, inhibition of the ATP synthase with either leucinostatin B or oligomycin is sufficient to selectively impede mTORC1 signaling and inhibit the growth of LAR-subtype cells.
Keyphrases
  • induced apoptosis
  • cell cycle arrest
  • ms ms
  • oxidative stress
  • endoplasmic reticulum stress
  • cell death
  • signaling pathway
  • pi k akt