Login / Signup

Validation of a MALDI-TOF MS Method for SARS-CoV-2 Detection on the Bruker Biotyper and Nasopharyngeal Swabs: A Brazil-UK Collaborative Study.

Otávio A LovisonRaminta GrigaitėFabiana C Z VolpatoJason K IlesJon LaceyFabiano BarretoSai R PandiriLisiane da Luz R BalzanVlademir V CantarelliAfonso Luis BarthRay K IlesAndreza Francisco Martins
Published in: Diagnostics (Basel, Switzerland) (2023)
We developed a MALDI-TOF mass spectrometry method for the detection of the SARS-CoV-2 virus in saliva-gargle samples using Shimadzu MALDI-TOF mass spectrometers in the UK. This was validated in the USA to CLIA-LDT standards for asymptomatic infection detection remotely via sharing protocols, shipping key reagents, video conferencing, and data exchange. In Brazil, more so than in the UK and USA, there is a need to develop non-PCR-dependent, rapid, and affordable SARS-CoV-2 infection screening tests that also identify variant SARS-CoV-2 and other virus infections. In addition, travel restrictions necessitated remote collaboration with validation on the available clinical MALDI-TOF-the Bruker Biotyper (microflex ® LT/SH)-and on nasopharyngeal swab samples, as salivary gargle samples were not available. The Bruker Biotyper was shown to be almost log10 3 more sensitive at the detection of high molecular weight spike proteins. A protocol for saline swab soaks out was developed, and duplicate swab samples collected in Brazil were analyzed by MALDI-TOF MS. The swab collected sample spectra that varied from that of saliva-gargle in three additional mass peaks in the mass region expected for IgG heavy chains and human serum albumin. A subset of clinical samples with additional high mass, probably spike-related proteins, were also found. Further, spectral data comparisons and analysis, subjected to machine learning algorithms in order to resolve RT-qPCR positive from RT-qPCR negative swab samples, showed 56-62% sensitivity, 87-91% specificity, and a 78% agreement with RT-qPCR scoring for SARS-CoV-2 infection.
Keyphrases