Login / Signup

IGF2BP2 regulates the inflammation of fibroblast-like synoviocytes via GSTM5 in rheumatoid arthritis.

Yunyi NanMinhao ChenWeijie WuRongrong HuangWeiwei SunQian LuZhifeng GuXingxing MaoHua XuYouhua Wang
Published in: Cell death discovery (2024)
Rheumatoid arthritis (RA) is a chronic autoimmune disease with an unknown etiology. RA cannot be fully cured and requires lengthy treatment, imposing a significant burden on both individuals and society. Due to the lack of specific drugs available for treating RA, exploring a key new therapeutic target for RA is currently an important task. Activated fibroblast-like synoviocytes (FLSs) play a crucial role in the progression of RA, which release interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α resulting in abnormal inflammatory reaction in the synovium. A previous study has highlighted the correlation of m 6 A reader insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) with inflammation-related diseases in human. However, the role of IGF2BP2 in the inflammatory reaction of FLSs during RA progression has not been assessed. In this study, IGF2BP2 expression was decreased in the synovial tissues of RA patients and collagen-induced arthritis (CIA) rats. Intra-articular injection of an adeno-associated virus (AAV) vector overexpressing IGF2BP2 relieved paw swelling, synovial hyperplasia and cartilage destruction in CIA rats. IGF2BP2 overexpression also inhibited lipopolysaccharide (LPS)-mediated RA fibroblast-like synoviocytes (RA-FLSs) migration and invasion accompanied by a decreased level of inflammatory factors in vitro. Conversely, IGF2BP2 suppression promoted RA-FLSs migration and invasion with an elevated level of inflammatory factors in vitro. The sequencing result showed that glutathione S-transferase Mu 5 (GSTM5), a key antioxidant gene, was the target mRNA of IGF2BP2. Further experiments demonstrated that IGF2BP2 strengthened the stability of GSTM5 mRNA, leading to weakened inflammatory reaction and reduced expression of matrix metalloproteinase 9 and 13 (MMP9, MMP13). Therefore, IGF2BP2-GSTM5 axis may represent a potential therapeutic target for RA treatment.
Keyphrases