Variance of Commercial Powdered Milks Analyzed by Proton Nuclear Magnetic Resonance and Impact on Detection of Adulterants.
James M HarnlyMarti Mamula BerganaKristie M AdamsZhuohong XieJeffrey C MoorePublished in: Journal of agricultural and food chemistry (2018)
Proton nuclear magnetic resonance spectra for 66 commercial powdered milk samples were analyzed by principal component analysis, soft independent modeling of class analogy, and pooled, crossed analysis of variance. It was found that the sample type (skim milk powder or non-fat dry milk), the supplier, the production site, the processing temperature (high, medium, or low temperature), and the day of analysis provided statistically significant sources of variation. Interestingly, inexact alignment (deviations of ±0.002 ppm) of the spectral reference peak was a significant source of variation, and fine alignment was necessary before the variation arising from the other experimental factors could be accurately evaluated. Using non-targeted analysis, the lowest detectable adulteration for dicyandiamide, melamine, and sucrose was 0.05%, the lowest detectable adulteration for maltodextrin and urea was 0.5%, the lowest detectable adulteration for ammonium sulfate and whey was 5%, and the lowest adulteration for soy protein isolate was undetectable using methods described herein. The measurement of variance and detection of adulteration were relatively unaffected by the resolution. Similar results were obtained with unbinned data (0.0003 ppm resolution) and binning of 333 data points (0.1 ppm resolution).