Login / Signup

Physicochemical and Quality Properties of Dried Courgette Slices: Impact of Vacuum Impregnation and Drying Methods.

Magdalena KręciszBogdan StępieńMarta PasławskaJarosław PopłońskiKinga Dulak
Published in: Molecules (Basel, Switzerland) (2021)
The aim of this study was to determine the effects that the type of impregnating solution and drying method (freeze drying (FD) and vacuum drying (VD) at 45 °C and convective drying (CD) at 50, 60, and 70 °C) had on the physicochemical and quality properties of courgettes. Courgette slices were vacuum-impregnated (6 kPa) in freshly squeezed onion, kale, and onion and kale (50:50) juices with 3% NaCl solution (N). The application of vacuum impregnation (VI) with impregnating solutions from freshly squeezed onions and kale had a beneficial effect on the bioactive values of courgette. The highest contents of quercetin (41.84 μg/g d.m.) and carotenoids (276.04 μg/g d.m.) were found in courgette impregnated with onion juice after freeze drying. The highest values of lutein and zeaxanthin (216.42 μg/g d.m.) were recorded for courgette impregnated with kale juice and convective dried. By analysing the kinetics of convective drying, the best matching of the logistic model was found. Increasing the drying process temperature from 50 to 70 °C reduced the drying time from 15% to 36%, depending on the type of impregnating solution used. Water activity < 0.6 was recorded for courgette dried by freezing, vacuum, and convection at 60 and 70 °C. Conclusions: The vacuum impregnation process and the impregnation solutions from freshly squeezed vegetables can be used to develop new snacks with high levels of bioactive compounds. The FD method is the most appropriate considering both the bioactive compounds content and the obtained colour and water activity.
Keyphrases
  • climate change
  • risk assessment
  • quality improvement