Login / Signup

Electromagnetically unclonable functions generated by non-Hermitian absorber-emitter.

Minye YangZhilu YeHongyi PanMohamed FarhatAhmet Enis CetinPai-Yen Chen
Published in: Science advances (2023)
Physically unclonable functions (PUFs) are a class of hardware-specific security primitives based on secret keys extracted from integrated circuits, which can protect important information against cyberattacks and reverse engineering. Here, we put forward an emerging type of PUF in the electromagnetic domain by virtue of the self-dual absorber-emitter singularity that uniquely exists in the non-Hermitian parity-time ( PT )-symmetric structures. At this self-dual singular point, the reconfigurable emissive and absorptive properties with order-of-magnitude differences in scattered power can respond sensitively to admittance or phase perturbations caused by, for example, manufacturing imperfectness. Consequently, the entropy sourced from inevitable manufacturing variations can be amplified, yielding excellent PUF security metrics in terms of randomness and uniqueness. We show that this electromagnetic PUF can be robust against machine learning-assisted attacks based on the Fourier regression and generative adversarial network. Moreover, the proposed PUF concept is wavelength-scalable in radio frequency, terahertz, infrared, and optical systems, paving a promising avenue toward applications of cryptography and encryption.
Keyphrases
  • machine learning
  • high frequency
  • high resolution
  • global health
  • light emitting
  • public health
  • healthcare
  • health information
  • big data
  • social media
  • network analysis