Login / Signup

Counterfactual Mediation Analysis with a Latent Class Exposure.

Gemma HammertonJon HeronKatie LewisKate TillingStijn Vansteelandt
Published in: Multivariate behavioral research (2024)
Latent classes are a useful tool in developmental research, however there are challenges associated with embedding them within a counterfactual mediation model. We develop and test a new method "updated pseudo class draws (uPCD)" to examine the association between a latent class exposure and distal outcome that could easily be extended to allow the use of any counterfactual mediation method. UPCD extends an existing group of methods (based on pseudo class draws) that assume that the true values of the latent class variable are missing, and need to be multiply imputed using class membership probabilities. We simulate data based on the Avon Longitudinal Study of Parents and Children, examine performance for existing techniques to relate a latent class exposure to a distal outcome ("one-step," "bias-adjusted three-step," "modal class assignment," "non-inclusive pseudo class draws," and "inclusive pseudo class draws") and compare bias in parameter estimates and their precision to uPCD when estimating counterfactual mediation effects. We found that uPCD shows minimal bias when estimating counterfactual mediation effects across all levels of entropy. UPCD performs similarly to recommended methods (one-step and bias-adjusted three-step), but provides greater flexibility and scope for incorporating the latent grouping within any commonly-used counterfactual mediation approach.
Keyphrases
  • social support
  • minimally invasive
  • depressive symptoms
  • electronic health record
  • machine learning
  • big data
  • artificial intelligence