Login / Signup

Development of Anti-CD74 Antibody-Drug Conjugates to Target Glucocorticoids to Immune Cells.

Philip E BrandishAnthony PalmieriSvetlana AntonenkoMaribel BeaumontLia BensoMark CancillaMangeng ChengLaurence Fayadat-DilmanGuo FengIsabel FigueroaJuhi FirdosRobert GarbaccioLaura Garvin-QueenDennis GatelyPrasanthi GedaChristopher HainesSuChun HseihDouglas HodgesJeffrey KernNickolas KnudsenKristen KwasnjukLinda LiangHuiping MaAnthony ManibusanPaul L MillerLily Y MoyYujie QuSanjiv ShahJohn S ShinPeter StiversYing SunDaniela TomazelaHyun Chong WooDennis ZallerShuli ZhangYiwei ZhangMark Zielstorff
Published in: Bioconjugate chemistry (2018)
Glucocorticoids (GCs) are excellent anti-inflammatory drugs but are dose-limited by on-target toxicity. We sought to solve this problem by delivering GCs to immune cells with antibody-drug conjugates (ADCs) using antibodies containing site-specific incorporation of a non-natural amino acid, novel linker chemistry for in vitro and in vivo stability, and existing and novel glucocorticoid receptor (GR) agonists as payloads. We directed fluticasone propionate to human antigen-presenting immune cells to afford GR activation that was dependent on the targeted antigen. However, mechanism of action studies pointed to accumulation of free payload in the tissue culture supernatant as the dominant driver of activity and indeed administration of the ADC to human CD74 transgenic mice failed to activate GR target genes in splenic B cells. Suspecting dissipation of released payload, we designed an ADC bearing a novel GR agonist payload with reduced permeability which afforded cell-intrinsic activity in human B cells. Our work shows that antibody-targeting offers significant potential for rescuing existing and new dose-limited drugs outside the field of oncology.
Keyphrases