Sarcopenia has garnered considerable interest in recent years as ageing-associated diseases constitute a significant worldwide public health burden. Nutritional supplements have received much attention as potential tools for managing sarcopenia. However, the specific nutrients responsible are still under-investigated. In the current study, we first determined the levels of short chain fatty acids (SCFAs) and intestinal flora in the feces of elderly sarcopenia subjects and elderly healthy individuals by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Then cell viability detection, flow cytometry and transcriptome analysis were adopted to experimentally evaluate the effect and the underlying mechanism of SCFA on C2C12 cells proliferation in vitro . The results suggested that patients with sarcopenia exhibited decreased levels of butyrate. And butyrate may stimulate C2C12 myocyte proliferation via promoting G1/S cell cycle transition. Transcriptomic analyses pointed to upregulation of the Mitogen-activated protein kinase (MAPK) signaling pathway in butyrate-treated cells. In addition, the above proliferative phenotypes could be suppressed by the combination of ERK/MAPK inhibitor. A combined transcriptomic and metabolomic approach was applied in our study to investigate the potential effect of microbiota-derived butyrate yield on muscular proliferation which may indicate a protective effect of nutritional supplements.
Keyphrases
- signaling pathway
- induced apoptosis
- pi k akt
- cell cycle arrest
- liquid chromatography tandem mass spectrometry
- cell cycle
- community dwelling
- epithelial mesenchymal transition
- public health
- ms ms
- flow cytometry
- skeletal muscle
- simultaneous determination
- middle aged
- single cell
- heavy metals
- fatty acid
- cell death
- body composition
- resistance training
- endoplasmic reticulum stress
- human health
- high resolution