Login / Signup

Fine mapping of QTL qCTB10-2 that confers cold tolerance at the booting stage in rice.

Jilong LiYinghua PanHaifeng GuoLei ZhouShuming YangZhanying ZhangJiazhen YangHongliang ZhangJinjie LiYawen ZengZi-Chao Li
Published in: TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik (2017)
The QTL qCTB10 - 2 controlling cold tolerance at the booting stage in rice was delimited to a 132.5 kb region containing 17 candidate genes and 4 genes were cold-inducible. Low temperature at the booting stage is a major abiotic stress-limiting rice production. Although some QTL for cold tolerance in rice have been reported, fine mapping of those QTL effective at the booting stage is few. Here, the near-isogenic line ZL31-2, selected from a BC7F2 population derived from a cross between cold-tolerant variety Kunmingxiaobaigu (KMXBG) and the cold-sensitive variety Towada, was used to map a QTL on chromosome 10 for cold tolerance at the booting stage. Using BC7F3 and BC7F4 populations, we firstly confirmed qCTB10-2 and gained confidence that it could be fine mapped. QTL qCTB10-2 explained 13.9 and 15.9% of the phenotypic variances in those two generations, respectively. Using homozygous recombinants screened from larger BC7F4 and BC7F5 populations, qCTB10-2 was delimited to a 132.5 kb region between markers RM25121 and MM0568. 17 putative predicted genes were located in the region and only 5 were predicted to encode expressed proteins. Expression patterns of these five genes demonstrated that, except for constant expression of LOC_Os10g11820, LOC_Os10g11730, LOC_Os10g11770, and LOC_Os10g11810 were highly induced by cold stress in ZL31-2 compared to Towada, while LOC_Os10g11750 showed little difference. Our results provide a basis for identifying the genes underlying qCTB10-2 and indicate that markers linked to the qCTB10-2 locus can be used to improve the cold tolerance of rice at the booting stage by marker-assisted selection.
Keyphrases
  • high density
  • genome wide
  • air pollution
  • poor prognosis
  • high resolution
  • genome wide identification
  • mass spectrometry
  • bioinformatics analysis
  • copy number
  • heat stress