The Modulation of Phospho-Extracellular Signal-Regulated Kinase and Phospho-Protein Kinase B Signaling Pathways plus Activity of Macrophage-Stimulating Protein Contribute to the Protective Effect of Stachydrine on Acetaminophen-Induced Liver Injury.
Fu-Chao LiuHuang-Ping YuHung-Chen LeeChun-Yu ChenChia-Chih LiaoPublished in: International journal of molecular sciences (2024)
Stachydrine, a prominent bioactive alkaloid derived from Leonurus heterophyllus, is a significant herb in traditional medicine. It has been noted for its anti-inflammatory and antioxidant characteristics. Consequently, we conducted a study of its hepatoprotective effect and the fundamental mechanisms involved in acetaminophen (APAP)-induced liver injury, utilizing a mouse model. Mice were intraperitoneally administered a hepatotoxic dose of APAP (300 mg/kg). Thirty minutes after APAP administration, mice were treated with different concentrations of stachydrine (0, 2.5, 5, and 10 mg/kg). Animals were sacrificed 16 h after APAP injection for serum and liver tissue assays. APAP overdose significantly elevated the serum alanine transferase levels, hepatic pro-inflammatory cytokines, malondialdehyde activity, phospho-extracellular signal-regulated kinase (ERK), phospho-protein kinase B (AKT), and macrophage-stimulating protein expression. Stachydrine treatment significantly decreased these parameters in mice with APAP-induced liver damage. Our results suggest that stachydrine may be a promising beneficial target in the prevention of APAP-induced liver damage through attenuation of the inflammatory response, inhibition of the ERK and AKT pathways, and expression of macrophage-stimulating proteins.
Keyphrases
- protein kinase
- signaling pathway
- anti inflammatory
- cell proliferation
- inflammatory response
- oxidative stress
- pi k akt
- mouse model
- adipose tissue
- high fat diet induced
- diabetic rats
- high glucose
- transcription factor
- poor prognosis
- epithelial mesenchymal transition
- high throughput
- binding protein
- metabolic syndrome
- induced apoptosis
- type diabetes
- wild type
- small molecule
- skeletal muscle